NOM : Prénom : Classe : Date :						
1.3 : passer du tableau au graphique	1					
1.2 : écrire	2					
2.1 : respecter une consigne	2, 5, 6 et 7					
2.4 : utiliser un logiciel	3, 4					
4.1 : raisonner	3 et 7					

Constat:

Au cours d'un cycle de développement, les cellules subissent de nombreuses **mitoses** ou **multiplications cellulaires**.

On remarque qu'au cours de ces mitoses, le nombre de chromosomes (le caryotype) est maintenu.

<u>Problème :</u> Comment le nombre de chromosomes peut-il être maintenu au cours des mitoses ?

1- Evolution de la quantité d'ADN au cours d'une multiplication cellulaire :

Il est possible de suivre la quantité d'ADN au cours d'une multiplication cellulaire, sachant qu'un chromosome correspond à une molécule d'ADN.

Voici un tableau qui représente la <u>quantité d'ADN</u> contenue dans <u>une cellule</u> au cours d'une multiplication cellulaire :

1) <u>Construire la courbe</u> montrant l'évolution de la quantité d'ADN en fonction du temps. (<u>AIDE</u> : critères de réussite sur la page suivante).

Quantité d'ADN dans une cellule (en nanogrammes)	6	6	6	8	10	12	12	12	6	6	6
Temps (en heure)	0	3	6	8	10	12	15	20	21	23	24

		Oui	Non	
	Echelles respectées			
	√ sur l'axe horizontal, 1cm = 1 heure			
	✓ sur l'axe vertical, 1 cm = 1 nanogramme d'ADN			
	Axes fléchés (
	représentent			
	Titre complet et souligné			
	Points bien placés et reliés avec une règle			
	Soin et orthographe			
	Utilisation de papier millimétré ou petits carreaux			
préser	<u>rire</u> la courbe, sur une feuille jointe, en suivant l'exem nte dans doc de laclasse.com. De 0 à 6h, la quantité d'ADN dans la cellule reste stab			
	De 6h à 12h, la quantité d'ADN		_	
	······································			
- [De 12h à 20h, la quantité d'ADN			
- [De 20h à 24h, la quantité d'ADN			,

J'ai réussi

Critères à respecter

elle passe de ànanogrammes.

3) Grâce au schéma ci-contre, préciser l'état des chromosomes (simple ou double) :

1 paire de	1 chromosome double 2 molécules d'ADN
chromosomes	1 paire de chromosomes
avant une multiplica	nir d'une paire de chromosomes tion cellulaire. Un chromosome
double comporte 2 mg	plécules d'ADN identiques.

- de 0 à 8 h : chromosomes
- de 8h à 20h : chromosomes
- de 20h à 24h : chromosomes

2- Conservation de l'information génétique au cours d'une multiplication cellulaire :

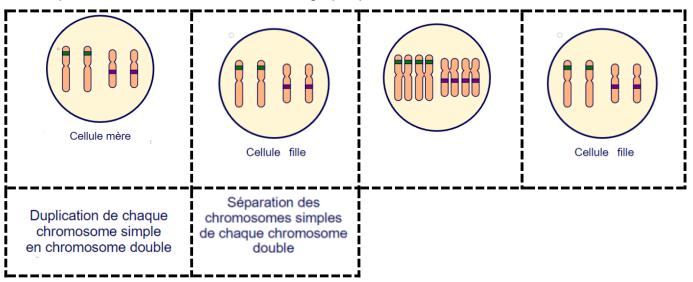
Aller sur le site https://www.viasvt.vivelessvt.com/reproduction-conforme.html

- 4) Compléter le schéma, sur l'ordinateur. Cliquer sur l'icône pour obtenir de l'aide.
- 5) Valider votre travail.
 - > Recommencer jusqu'à ce que ce soit juste.

- 6) Quand c'est juste:
- Sur votre graphique, coller les <u>schémas</u> de la « cellule-mère », des « 2 cellulesfilles identiques » et l'étape intermédiaire.
- Coller les deux commentaires qui apparaissent.

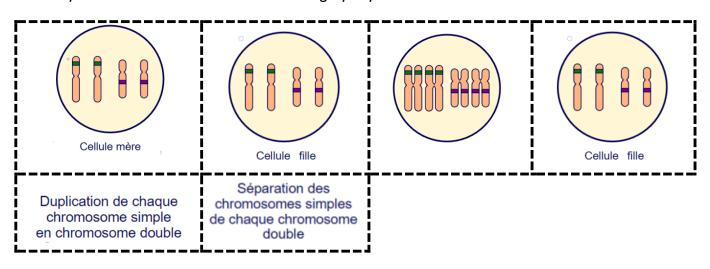
Le graphique est à rendre.

3 - Bilan :

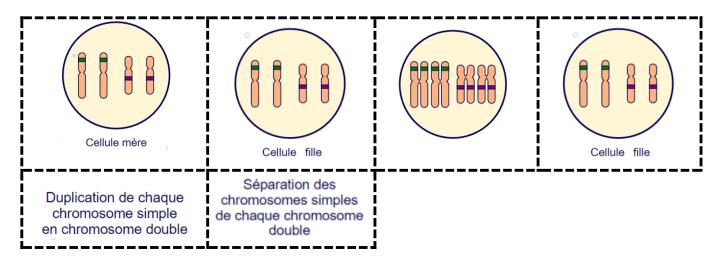

7) <u>Expliquer</u> alors comment l'information génétique est conservée au cours d'une multiplication cellulaire.

Notions à utiliser : séparent, duplication, simples, doubles.

Avant la multiplication cellulaire, la quantité d'ADN double grâce à la					
car les chromosomes (à une chromatide)				
deviennent (à deux chromatides). Pendant la r	mitose, les chromatides				
des chromosomes doubles se	et se répartissent dans				
les 2 cellules-filles : la quantité d'ADN est divisée par deux.					


Aide question 6:

Découper les schémas et les coller sur le graphique.


Aide question 6:

Découper les schémas et les coller sur le graphique.

Aide question 6:

Découper les schémas et les coller sur le graphique.

